Space-time Grid Connections for Finite Integration Method
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The perfectly matched layer (PML) absorbing boundary is implemented for the space-time finite integration (FI) method. The
subgrid connection in 3D and 4D space-time is discussed. The computational accuracy of several types of 3D and 4D space-time

subgrid methods are evaluated using the PML.
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|I. INTRODUCTION

THE ELECTROMAGNETIC field analysis of fine structure of
sub-wavelength scale is required for advanced electronic
and optical devices [1]. The analysis of these devices using the
conventional FDTD method [2] suffers large computational
cost because the spatial grid should be refined uniformly
unless a sophisticated subgrid method [2] is used. The space-
time finite integration (FI) method [3]-[4] achieves efficient
electromagnetic field computation using an adaptive time-step.
Ref. [5] developed 3D and 4D space-time subgrid method for
the adaptive grid construction and compared with the subgrid
scheme [6] derived from the spatial FI method [7]. However,
the computational accuracy of space-time subgrid scheme has
not yet been fully examined because only the periodic spatial
boundary condition was implemented.

This paper develops the connection scheme to the perfectly
matched layer (PML) [8] for the space-time FI method and
discusses the 3D and 4D connections to space-time subgrids.

I1. SPACE-TIME FINITE INTEGRATION METHOD
The coordinate system is denoted by (w, x, y, z) = o x', X%
x*) where w = ct,c = 1 /m and &, and p, are respectively
the permittivity and permeability of vacuum. The integral
forms of Maxwell equations [4] without source terms are

Sﬁaon =0,$0,6=0, )
F=-%%, Edx%dx’ + Y7, cBjdx*dx', ©)
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where (j, k, 1) is a cyclic permutation of (1, 2, 3), and €, and
Q4 are hypersurfaces in space-time ; 9, and 9, are
respectively constituted by the faces of primal and dual grids.
The electromagnetic variables in the FI method are defined as

f=J Fa= 6 )
where S, and S, are the faces of the primal and dual grids that
constitute €2, and dQ,. To express the constitutive equation
simply, the Hodge dual grid [4] is introduced as
Joq crdx®dx’ _ Joq dxdx! e ©
fsp dxkdxt fsp ¢ dxdx/

where ¢, = 1/+/€., ; K is a constant determined for each pair
of S, and Sy ; and & and u, are respectively the relative

permittivity and permeability. From (4) and (5), it follows that

f=2Zg/k, where Z = \/u 1y/ (&-€y) is the impedance.

11l. PML ABSORBING BOUNDARY CONDITION

In the 3D space, all the components of electric flux density
and magnetic flux density are divided into two subcomponents
respectively such as

Dy =Dyy + Dy, . (6)
Using these subcomponents, the space-time FI method updates
the electric flux density in the PML as
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where o, and o. are the electric conductivities in y-direction
and z-direction respectively, Aw is the time-step, the subscripts
are spatial indexes for x , y and z directions, and the
superscript is the temporal index. The time-marching scheme
for the other variables is given similarly.

IV. SPACE-TIME SUBGRID CONNECTION

Ref. [5] proposed straight-type and staircase-type subgrids
in the 3D and 4D space-time. However, the subgrid
connection in 4D space-time was not discussed in detail.

A. 3D space-time subgrid

The 3D straight-type and staircase-type space-time subgrids
are examined with the PML boundary condition. Fig. 1
illustrates the computational domain, where Ax and Aw are set
to 1 and 0.5 by normalization and Al is a free parameter. The
normalized initial conditions are E, =E, =0 and B, =
exp[— (x? +y2)/25] . Fig. 2 depicts the distributions of
discrepancy AB, between B, obtained employing FDTD



method and that obtained using the 3D staircase-type space-
time subgrid at ¢t = 100. Unphysical wave reflection caused
by the subgrid connection is reduced by the optimization of
Al
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Fig. 1. 3D Space-time subgrid: (a) the straight type subgrid with a free
parameter Al, (b) computational domain, and (c) spatial and (d) space-time
subgrid connection of staircase type.
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Fig. 2. Discrepancy of B, compared with FDTD method: (a)Al = 0.01, and
(b) Al = 0.1.
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Fig. 3. 4D Straight type subgrid connection: (a) faces Sy, Sp2, Sai, Sa2, and (b)
faces Sp3, Sp4, Sd3, Sd4.

B. 4D Strait type subgrid

Fig. 3 illustrates the straight-type subgrid connection. The
faces Sp;, Sy, and their dual faces Sy;, Sg, are given as

Sp1 = Sy = Ax(dxy/2 — dx,/6) A Ax(dxy/2 + dx,/6) (8)
Sdl = 3AWdX()/4 " Ax(3dx1/4 + dXQ/4 - d)C3/4 ) 5
Sa2 = Awdxo/4 ~ Ax(3dx,/4 + dx,/4 — dxs/4) C)

The variables f; = fsp,-F (i=1, 2) mean magnetic fluxes and g; =
fsd,-G (i=1, 2) mean magnetomotive forces such as:

fi = (Ax)*(3¢B, + ¢B, — ¢B;) / 12
g1 = 3AxAw (3H1 +H2 —H3)/ 16 .

(10)
(11)

The faces S3, Sp4 and their dual faces Sg3, Sy4 are given as
Sp3 = [Awdxy/2 — (Aw)zdx1/6Ax] AN Ax(dx,/2 — dx/6) ,

Sps = [Awdxg/2 — (Aw)’dx)/6Ax] A Ax(dxy/2 — dxy/6)  (12)
Ses = [Ax(3dx1/4 + dxy/4) — Awdx, /4]~ 3Axdx/4,
Sas = [Ax(3dx1/4 + dxy/4) — Awdxo/4] » Axdxs/4 . (13)

The dominant component of f; and f; is the electromotive force
but £; and f; also contain magnetic flux such as:

fi=Aw[Ax 3E, — E;) — AweBs] / 12 .

(14)

The dominant component of g; and gy is the electric flux but
g5 and g, also contain magnetomotive force such as:

3= 3Ax [A)C(— 3CD2 + CDl) - AWH3] /16

C

(15)
. 4D Staircase type subgrid

Fig. 4 illustrates the staircase-type subgrid connection. The
faces S; and their dual faces Sy; (i = 1, ..., 4) are redefined in

the

staircase type subgrid as

Sp1 = (Ax)’ (dxadry/4 + dxsdvy/8 — dxidvr/8)

Sp2 = (Ax)* (dx,dx3/4 + dzdx(/24 — dx,dx,/24) (16)
Sa1 = AxAw (3dxedx;/8 + 3dxodx/16 — 3dxodx3/16) ,
Sq2 = AxAw (3dxodx;/8 + dxdxa/16 — dxedxs/16) (17)
Sp3 = AxAw (dedX2/4 — dXodX]/g) — (AW)zdxldX2/8 .
Spa = AxAw (dxodxy/4 — dxodx,/24) — (Aw)’dx,dx,/24  (18)

Sd3 = (Ax)z(—3dx3dx1/8 + 3dX2dX3/16) - 3Awadx0dx3/16 .

Sas = (Ax)*(=3dx3dx,/8 + dx,dx3/16) — AxAwdxedx;/16 . (19)

The computational accuracy given by the two types of
subgrid connections will be compared in the full paper.
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Fig. 4. 4D Staircase type subgrid connection.
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