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The perfectly matched layer (PML) absorbing boundary is implemented for the space-time finite integration (FI) method. The 

subgrid connection in 3D and 4D space-time is discussed. The computational accuracy of several types of 3D and 4D space-time 

subgrid methods are evaluated using the PML. 
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I. INTRODUCTION 

HE ELECTROMAGNETIC field analysis of fine structure of 

sub-wavelength scale is required for advanced electronic 

and optical devices [1]. The analysis of these devices using the 

conventional FDTD method [2] suffers large computational 

cost because the spatial grid should be refined uniformly 

unless a sophisticated subgrid method [2] is used. The space-

time finite integration (FI) method [3]-[4] achieves efficient 

electromagnetic field computation using an adaptive time-step. 

Ref. [5] developed 3D and 4D space-time subgrid method for 

the adaptive grid construction and compared with the subgrid 

scheme [6] derived from the spatial FI method [7]. However, 

the computational accuracy of space-time subgrid scheme has 

not yet been fully examined because only the periodic spatial 

boundary condition was implemented.  

This paper develops the connection scheme to the perfectly 

matched layer (PML) [8] for the space-time FI method and 

discusses the 3D and 4D connections to space-time subgrids.  

II. SPACE-TIME FINITE INTEGRATION METHOD 

The coordinate system is denoted by (w, x, y, z) = (x
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) where w = ct, 𝑐 = 1/√𝜀0𝜇0 and 𝜀0 and 𝜇0 are respectively 

the permittivity and permeability of vacuum. The integral 

forms of Maxwell equations [4] without source terms are  
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where (𝑗, 𝑘, 𝑙) is a cyclic permutation of (1, 2, 3), and  Ω𝑝 and 

Ω𝑑  are hypersurfaces in space-time ; ∂Ω𝑝  and ∂Ω𝑑  are 

respectively constituted by the faces of primal and dual grids.  

The electromagnetic variables in the FI method are defined as 

𝑓 = ∫ 𝐹
𝑆𝑝

, 𝑔 =  ∫ 𝐺
𝑆𝑑

,                                                   (4) 

where 𝑆𝑝 and 𝑆𝑑 are the faces of the primal and dual grids that 

constitute ∂Ω𝑝 and ∂Ω𝑑 . To express the constitutive equation 

simply, the Hodge dual grid [4] is introduced as  
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where 𝑐𝑟 = 1 √𝜀𝑟𝜇𝑟⁄  ; 𝜅 is a constant determined for each pair 

of 𝑆𝑝  and 𝑆𝑑 ; and 𝜀𝑟  and 𝜇𝑟  are respectively the relative 

permittivity and permeability. From (4) and (5), it follows that 

𝑓 = 𝑍𝑔 𝜅⁄ , where 𝑍 = √𝜇𝑟𝜇0 (𝜀𝑟𝜀0)⁄  is the impedance. 

III. PML ABSORBING BOUNDARY CONDITION 

In the 3D space, all the components of electric flux density 

and magnetic flux density are divided into two subcomponents 

respectively such as  

𝐷𝑥 = 𝐷𝑥𝑦 + 𝐷𝑥𝑧   .                                                   (6) 

Using these subcomponents, the space-time FI method updates 

the electric flux density in the PML as 
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where σy and σz are the electric conductivities in y-direction 

and z-direction respectively, Δw is the time-step, the subscripts 

are spatial indexes for 𝑥 , 𝑦  and 𝑧  directions, and the 

superscript is the temporal index. The time-marching scheme 

for the other variables is given similarly. 

IV. SPACE-TIME SUBGRID CONNECTION 

Ref. [5] proposed straight-type and staircase-type subgrids 

in the 3D and 4D space-time. However, the subgrid 

connection in 4D space-time was not discussed in detail. 

A. 3D space-time subgrid 

The 3D straight-type and staircase-type space-time subgrids 

are examined with the PML boundary condition. Fig. 1 

illustrates the computational domain, where ∆𝑥 and ∆𝑤 are set 

to 1 and 0.5 by normalization and ∆𝑙 is a free parameter. The 

normalized initial conditions are 𝐸𝑥 = 𝐸𝑦 = 0 and 𝐵𝑧 =

exp [− (𝑥2 + 𝑦2) 25⁄ ] . Fig. 2 depicts the distributions of 

discrepancy ∆𝐵𝑧  between 𝐵𝑧 obtained employing FDTD 

T 



method and that obtained using the 3D staircase-type space-

time subgrid at ct = 100. Unphysical wave reflection caused 

by the subgrid connection is reduced by the optimization of 

∆𝑙. 

 
Fig. 1. 3D Space-time subgrid: (a) the straight type subgrid with a free 

parameter ∆𝑙, (b) computational domain, and (c) spatial and (d) space-time 

subgrid connection of staircase type. 

 
Fig. 2. Discrepancy of 𝐵𝑧 compared with FDTD method: (a)∆𝑙 = 0.01, and 

(b) ∆𝑙 = 0.1. 

 

 
Fig. 3. 4D Straight type subgrid connection: (a) faces Sp1, Sp2, Sd1, Sd2, and (b) 

faces Sp3, Sp4, Sd3, Sd4. 

B. 4D Strait type subgrid 

Fig. 3 illustrates the straight-type subgrid connection. The 

faces Sp1, Sp2 and their dual faces Sd1, Sd2 are given as 

Sp1 = Sp2 = Δx(dx2/2  dx1/6) ^ Δx(dx3/2 + dx1/6)    (8) 

Sd1 = 3Δwdx0/4 ^ Δx(3dx1/4 + dx2/4  dx3/4 ) , 

Sd2 = Δwdx0/4 ^ Δx(3dx1/4 + dx2/4  dx3/4)      (9) 

The variables fi = ∫SpiF (i = 1, 2) mean magnetic fluxes and gi = 

∫SdiG (i = 1, 2) mean magnetomotive forces such as:  

f1 = (Δx)
2
(3cB1 + cB2  cB3) / 12          (10) 

g1 = 3ΔxΔw (3H1 + H2  H3) / 16 .         (11) 

The faces Sp3, Sp4 and their dual faces Sd3, Sd4 are given as 

Sp3 = [Δwdx0/2  (Δw)
2
dx1/6Δx] ^ Δx(dx2/2  dx1/6) ,  

Sp4 = [Δwdx0/2  (Δw)
2
dx1/6Δx] ^ Δx(dx2/2  dx1/6)   (12) 

Sd3 = [Δx(3dx1/4 + dx2/4)  Δwdx0 /4] ^ 3Δxdx3/4,  

Sd4 = [Δx(3dx1/4 + dx2/4)  Δwdx0/4] ^ Δxdx3/4 .   (13) 

The dominant component of f3 and f4 is the electromotive force 

but f3 and f4 also contain magnetic flux such as: 

f3 = Δw [Δx (3E2  E1) – ΔwcB3] / 12 .       (14) 

The dominant component of g3 and g4 is the electric flux but 

g3 and g4 also contain magnetomotive force such as:  

    g3 = 3Δx [Δx( 3cD2 + cD1)  ΔwH3] / 16 .     (15) 

C. 4D Staircase type subgrid 

Fig. 4 illustrates the staircase-type subgrid connection. The 

faces Spi and their dual faces Sdi (i = 1, …, 4) are redefined in 

the staircase type subgrid as 

Sp1 = (Δx)
2
 (dx2dx3/4 + dx3dx1/8  dx1dx2/8) , 

Sp2 = (Δx)
2
 (dx2dx3/4 + dzdx0/24  dx1dx2/24)     (16) 

Sd1 = ΔxΔw (3dx0dx1/8 + 3dx0dx2/16  3dx0dx3/16) ,  

Sd2 = ΔxΔw (3dx0dx1/8 + dx0dx2/16  dx0dx3/16)        (17) 

Sp3 = ΔxΔw (dx0dx2/4  dx0dx1/8)  (Δw)
2
dx1dx2/8 , 

Sp4 = ΔxΔw (dx0dx2/4  dx0dx1/24)  (Δw)
2
dx1dx2/24   (18) 

Sd3 = (Δx)
2
(3dx3dx1/8 + 3dx2dx3/16)  3ΔxΔwdx0dx3/16 , 

Sd4 = (Δx)
2
(3dx3dx1/8 + dx2dx3/16)  ΔxΔwdx0dx3/16 . (19) 

    The computational accuracy given by the two types of 

subgrid connections will be compared in the full paper.  

 
Fig. 4. 4D Staircase type subgrid connection. 
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